Clinical features and novel presentations of human monkeypox in a central London centre during the 2022 outbreak: descriptive case series - The BMJ

Introduction

On 6 May 2022, the UK High Consequence Infectious Diseases (HCID) network was alerted to an individual with monkeypox who had recently returned from West Africa. Six further infected individuals were identified the following week, without epidemiological linkage to West Africa. As of 12 July, 1735 people had been identified with monkeypox in the UK, most (96%) occurring in gay, bisexual, or other men who have sex with men, and 79% occurring in London.12 People with monkeypox infection have also been reported in several other non-endemic countries in Europe and the Americas, with the highest reported case loads outside of the UK in Spain and Germany.3

Monkeypox is due to an orthopoxvirus, which rarely causes disease in humans. Although the exact reservoir of the virus is still unknown, rodents are suspected to play a part in transmission. The virus was first identified in 1958, among primates in captivity for research purposes.4 Two genetically distinct viral clades are described: Central African (Congo Basin) and West African.5 The first reports of humans becoming infected were recorded in 1970, when a smallpox-like illness was investigated in areas of the Democratic Republic of Congo thought to be free of variola.67 Monkeypox is endemic in the Congo Basin and West Africa, where outbreaks involving 23 to 88 people have been described.89 Several animal species are susceptible to the infection, and animal to human transmission through handling and ingesting wild game animals has been identified as the primary route of infection in African outbreaks, followed by human to human transmission through close contact with infected individuals.10 Spread of respiratory droplets and direct contact with skin lesions and scabs have been described as the predominant routes of transmission between humans, but transmission can also occur via fomites.11 In 2003, the first monkeypox outbreak in the Western hemisphere was reported in 11 people in the United States who had been in close contact with infected prairie dogs. These animals had been transported alongside a Giant Gambian rat, presumed to be the primary source of the infection.12 Since 2018, travel associated monkeypox infection has been diagnosed in four people in the UK, with onward transmission to three further people.13 Sporadic cases of imported infections have also been reported in the US, Singapore, and Israel.14

The incubation period of monkeypox is currently understood to be about 12 days (range 5-24 days).1112 Classic descriptions of monkeypox infection depict biphasic clinical features, with a prodromal phase characterised by fever, malaise, sweats, lymphadenopathy, and headache, followed by skin eruption 2-4 days later.11 Skin lesions follow a typical pattern of evolution, starting as macules and progressing into papules, vesicles, and pustules, which subsequently crust over and then desquamate.1315 Historically, lesions have appeared simultaneously and progressed sequentially.16 Lesions have predominantly affected the face (95% of infected people), palms and soles (75%), mucous membranes (70%), and, less commonly, genitals.5 Most infections are self-limiting and relatively mild, with symptoms lasting 2-4 weeks. Severe manifestations of infection include encephalitis, secondary skin infection, pneumonia, and ocular disease leading to loss of vision. Higher risk populations include neonates, children, and those with immunodeficiency.17

Monkeypox is designated as a high consequence infectious disease in the UK.18 In the 2022 outbreak, the rapid community spread meant that most infected individuals were managed at home after risk assessment.19 The box shows the current UK Health Security Agency case definition of possible and probable monkeypox infection.20

UK Health Security Agency case definition of possible and probable monkeypox infection as of 16 July 2022

Possible infection

  • A person with a febrile prodrome* compatible with monkeypox infection where there is known prior contact with a confirmed case in the 21 days before symptom onset.

  • Or

  • A person with an illness where the clinician has a high suspicion of monkeypox (for example, this may include prodrome or atypical presentations with exposure histories deemed high risk by the clinician, or classical rash without risk factors).

Probable infection

  • has an epidemiological link to a confirmed or probable case of monkeypox in the 21 days before symptom onset

  • reported a travel history to West or Central Africa in the 21 days before symptom onset

  • is a gay or bisexual man or man who has sex with men

  • *Consists of fever ≥38°C, chills, headache, exhaustion, muscle aches (myalgia), joint pain (arthralgia), backache, and swollen lymph nodes (lymphadenopathy).

  • †Acute illness with fever (>38.5°C), intense headaches, myalgia, arthralgia, back pain, lymphadenopathy.

The observed clinical features of monkeypox infection in the 2022 UK outbreak differ from those in historical reports. We describe the characteristics and clinical features of monkeypox infection in people managed through a single south London centre and present a series of novel presentations.

Methods

Setting

We conducted a retrospective observational analysis of people with polymerase chain reaction (PCR) confirmed monkeypox virus, who were tested and managed through a south London HCID centre. The centre is one of five HCID centres in the UK and serves an inner city central and south London population. Swabs for diagnostic sampling were taken from the lesions at affiliated community sexual health and HIV medicine services, on admission to hospital (inpatient ward or emergency department) or on transfer of patients with suspected monkeypox from neighbouring NHS trusts (see supplementary figure 1). Samples were processed at the Rare and Imported Pathogens Laboratory at Porton Down, UK.21 People with suspected and confirmed monkeypox infection were risk stratified according to disease severity, immune status, and their ability to self-isolate, and managed accordingly. As part of routine clinical care, individuals were clinically assessed before testing. All people with a positive PCR test result for monkeypox virus took part in a telephone consultation to be counselled about their result and to conduct a risk assessment.

Inclusion criteria and data collection

All people tested for monkeypox virus between 13 May and 1 July 2022 were identified through routine tracking of samples sent from the centre's virology laboratory to the Rare and Imported Pathogens Laboratory. Those who tested positive were included for further study.

Clinical data were collected through one of three electronic healthcare systems: Electronic Patient Record iSOFT Clinical Manager 1.6 (iSOFT Group, Falls Church, VA), eNoting Client (an in-house patient records system), and preView (IMS MAXIMS, Milton Keynes, UK). Data were collected on personal characteristics, signs and symptoms reported at presentation, mucocutaneous manifestations (description, number, characteristics, and locations), risk factors as defined by the UK Health Security Agency (travel, contacts, and sexual history), HIV status, and sexual health screen results. Typical lesions were defined as macules, papules, vesicles, pustules, umbilication, crust, or scab.

Statistical analysis

We calculated means and medians for continuous data, and percentages for nominal data. The Clopper-Pearson exact method was used to calculate confidence intervals for symptom prevalence. Kaplan Meier for length of stay analysis was calculated using Graphpad Prism version 9.3.1. All other analysis was calculated using Microsoft Excel version 16.62.

Patient and public involvement

The research question for this study was formed through discussions with patients. Although there was no further direct patient or public involvement in this paper owing to limited resources, we have asked members of the public to read our manuscript after submission and also plan to disseminate key messages through social media and conferences.

Novel presentations

We describe presentations of monkeypox infection in the participants that are not commonly reported. Some symptoms were severe and required hospital admission. Images represent both a range of presentations and a series of progression, giving an insight into the clinical course of the disease in an outbreak largely centred on gay, bisexual, and other men and men who have sex with men.

Penile oedema

Of the 31 participants who reported penile oedema, five had documented paraphimosis or phimosis.

One participant, a 34-year-old circumcised man, presented with multiple penile lesions with clinically significant associated oedema. He had a history of Crohn's disease and was receiving adalimumab. He initially described multiple small, vesicular lesions on the penile shaft, coronal sulcus, and scrotum, which enlarged over the next two days, becoming umbilicated, flesh coloured papules (fig 1). The lesions then became more indurated, and the patient developed fever and cervical lymphadenopathy. On day 5 of symptoms, he developed erythema and swelling that extended from the mid-penile shaft to the glans. Overnight the swelling progressed rapidly, and the patient was admitted to hospital for assessment.

Fig 1

Progression of penile lesions and penile oedema

">Fig 1
Fig 1

Progression of penile lesions and penile oedema

On examination, 14 large, umbilicated lesions were identified along the penile shaft, coronal sulcus, and scrotum. There was associated subcutaneous oedema with no evidence of necrosis, and the skin was not tense or painful. Single pustular lesions on the participant's arm, back, and hip were also noted, along with inguinal lymphadenopathy. He was able to urinate. Results of a Treponema pallidum particle assay and rectal swab for N gonorrhoeae and C trachomatis nucleic acid amplification tests were negative, respectively. The urology team advised conservative management with cold compression and massage, and analgesia including topical lidocaine gel, ibuprofen, and oral morphine sulphate. Over the next 48 hours the swelling remained unchanged, with bruising extending from the glans towards the penile base. The swelling subsequently subsided gradually, and the patient was discharged on day 13. By day 16 the swelling had largely resolved, and the penile lesions had crusted over.

Secondary bacterial infection

One participant, a 47-year-old man with a history of HIV (viral load <200 copies/mL on antiretroviral therapy, CD4 count 755 cells/μL), was referred for review with extensive genital lesions, penile swelling, and purulent penile discharge.

He attended the emergency department when he first noticed spreading vesicles on his scrotum. A swab taken from the lesion confirmed monkeypox virus. The patient re-presented to the emergency department with progressive scrotal swelling, pain, and worsening penile ulceration and was subsequently admitted to hospital. On examination, extensive purulent lesions were identified on the penis and scrotum, with surrounding oedema (fig 2, also see supplementary figure 4). Vesicles were also noted on the arms and torso. No pain was elicited during digital rectal examination. Although there was no urinary retention or dysuria, the patient was catheterised because of concerns about increasing swelling of the penis. He was treated with co-amoxiclav to cover for a superadded bacterial infection but was switched to meropenem and clindamycin because of clinical suspicion of Fournier's gangrene. A swab sample taken from the penis grew Staphylococcus aureus and Streptococcus dysgalactiae. Lesions were negative for herpes simplex virus. A computed tomography scan showed extensive penile ulceration, a large hydrocele, and fluid within the scrotum. There was no collection or gas within soft tissue. The participant remains an inpatient at the time of writing.

">Fig 2
Fig 2

Secondary bacterial infection of penis due to Staphylococcus aureus and Streptococcus dysgalactiae. Also see supplementary figure 4

Rectal perforation

Overall, 71 (36.0%) participants reported rectal pain or pain on defecation, and this was a common reason for admission (n=8). Five participants had proctitis confirmed on MRI, with one having a perforated rectum and one a perianal abscess.

One participant, a 46-year-old man with a history of HIV (viral load <200 copies/mL on antiretroviral therapy, CD4 count 1200 cells/μL), presented with severe rectal pain.

Symptoms started with fever, sore throat, and fatigue, followed by severe rectal pain. He was seen in the sexual health service, started on empirical doxycycline for proctitis, and tested for monkeypox virus. Over the next two days the patient developed a papular rash on his upper arms and trunk. A week after symptom onset, the rectal pain became so severe the patient required admission to hospital for pain control.

On examination, a papular rash with white exudates was identified in the oral cavity, along with right sided cervical lymphadenopathy. A cluster of tender, white perianal papules were located at the 3 o'clock position. Digital rectal examination elicited noticeable tenderness in the rectum and anal canal. The patient had ongoing fevers and continued to develop new skin lesions. He was started on tecovirimat 600 mg twice daily for 14 days. Results were negative for N gonorrhoeae and C trachomatis (triple site (throat, rectal, and urethral) sampling). No evidence of concomitant T pallidum infection was found.

MRI on day 12 of symptoms showed active proctitis with evidence of a localised lower rectal wall perforation and associated collection (fig 3). The patient was treated conservatively with intravenous ceftriaxone and metronidazole.

">Fig 3
Fig 3

T2 weighted magnetic resonance imaging scan of pelvis showing a 3.5 cm cavity in left mesorectum, adjacent to the rectal wall representing an area of localised perforation (arrow)

Solitary lesion

In total, 22 (11.2%) participants presented with a solitary cutaneous lesion.

One participant, a 53-year-old man with a history of HIV (viral load <200 copies/mL on antiretroviral therapy), presented with a single skin lesion on his thigh. Initially this was a small papule on the medial right thigh but developed into a painful mass with surrounding erythema. After review by a general practitioner, the patient started flucloxacillin, but with no benefit. He presented to the emergency department because the lesion had increased in size. He had no associated fever or other systemic symptoms.

On examination a 4×2 cm, tender area of induration with a central area of crusting was noted, along with bilateral inguinal lymphadenopathy (fig 4). The patient was admitted to hospital for treatment with intravenous antibiotics and further investigation. Ultrasound imaging showed inflamed subcutaneous tissues within the upper right thigh, with a tract to a further lesion in the upper right outer thigh, and reactive groin lymph nodes (see supplementary figure 5). Samples were negative for Leishmania, Rickettsiae, and T pallidum, and for N gonorrhoeae and C trachomatis (triple site (throat, rectal, and urethral) sampling). The patient was discharged with oral co-amoxiclav. However, because of ongoing symptoms and the increase of monkeypox infection in the UK, he was reassessed and tested for monkeypox virus, with a positive result 13 days after symptom onset. How the patient became infected is unclear and there was no known sexual or other exposure to the virus. The patient was reviewed on day 18 by virtual consultation, at which time the crust on the thigh lesion had fallen off.

">Fig 4
Fig 4

Development of solitary lesion on right upper inner thigh, tracking laterally to outer thigh. Also see supplementary figure 5

Polymorphic lesions

Seventy (35.5%) participants had cutaneous manifestations at different stages of evolution at a single time point documented in the clinical notes.

One participant, a 48-year-old man, presented with polymorphic skin lesions having first noticed a single erosion on his scrotum, which spread to the penile base and foreskin. On day 3 he developed pustular lesions with an erythematous base on his arms, behind his knee, below his ear, and on the bridge of his nose (fig 5). He attended the sexual health service and emergency department with ulcerated genital lesions and was treated with flucloxacillin. On day 5 he developed systemic symptoms, including fever, myalgia, back pain, headaches, and lethargy. By day 17 the genital lesions had crusted over; however, the patient developed new pustular lesions on his hands. By day 24, the lesions on the hands, legs, and face had crusted over. The previously crusted scrotal and penile lesions became ulcerated, and the patient was treated with co-amoxiclav for a suspected secondary bacterial infection. A swab grew Streptococcus pyogenes. Screening results were negative for herpes simplex virus, T pallidum, N gonorrhoeae, and C trachomatis.

">Fig 5
Fig 5

Cutaneous lesions on the nose, hand, and penis over time. On day 17 there were fresh pustular lesions on the hand, a partly scabbed lesion on the face, and fully scabbed lesions on the penis

Maculopapular rash

Twenty seven (13.7%) participants reported an erythematous maculopapular rash of varying distribution and rapid onset, separate to areas of blistering or pustules. One of these participants had positive syphilis serology (n=4 unknown).

One participant, a 36-year-old man with a history of HIV (viral load <200 copies/mL on antiretroviral therapy, CD4 count >400 cells/μL), reported a rapidly progressive maculopapular rash soon after developing perianal vesicles.

The vesicles initially progressed into three pruritic, pustular, perianal lesions. On day 4 the patient presented to the sexual health service with rectal pain, tenesmus, rectal bleeding, and difficulty defecating. He was treated empirically for proctitis with doxycycline 100 mg twice daily and aciclovir 400 mg three times daily. On day 6 the patient awoke to a widespread symmetrical, pruritic maculopapular rash across his torso, back, legs, and buttocks, and reported inguinal lymphadenopathy (fig 6; also see supplementary figure 6). He denied any fever or systemic features. Results for herpes simplex virus, N gonorrhoeae, and C trachomatis (3 in 1 sampling) and T pallidum were negative. By day 8 the perianal lesions had begun to crust over, tenesmus had improved, and the rash had started to diminish.

">Fig 6
Fig 6

Symmetrical maculopapular rash of the torso, back, and buttocks. Also see supplementary figure 6

Oropharyngeal manifestations

Twenty seven (13.7%) participants had oropharyngeal lesions and nine (4.6%) had tonsillar erythema, pustules, oedema, or abscess.

One participant, a 25-year-old man, presented with a right sided tonsillar abscess.

He described developing right sided neck pain, quickly followed by an erythematous, pruritic rash over his trunk. He subsequently developed fever, progressively worsening right submandibular swelling, and pain, and he reported fatigue. The swelling increased, resulting in dysphagia and difficulty breathing. The patient was referred to his local ear, nose, and throat centre where a right tonsillar abscess was observed.

A single papule was noted on the patient's right forearm. A swab taken from the papule tested positive for monkeypox virus, and the patient was transferred to the high consequence infectious diseases ward. On examination he had a widespread symmetrical erythematous maculopapular rash over his chest (sparing the midline), back, and upper arms, with areas of confluent erythema (fig 7). Smaller areas of a petechial rash were also noted. The right tonsil was enlarged, with an overlying pustular lesion and yellow-green exudate, with associated right cervical lymphadenopathy (fig 7). A small, crusted lesion was evident on each antecubital fossa. The patient had no genital or anal lesions. He was treated with benzylpenicillin and metronidazole. Tonsillar and skin swabs tested positive for monkeypox virus by PCR. Over the course of hospital admission, the rash subsided and the dysphagia improved. Two repeat throat swabs tested positive for monkeypox virus by PCR. Results for N gonorrhoeae and C trachomatis were negative. Additionally, test results for blood cultures, respiratory viral screen, herpes simplex virus, and varicella zoster virus PCR, and HIV, Epstein Barr virus, cytomegalovirus, and mumps IgM were all negative.

">Fig 7
Fig 7

(Left) Symmetrical erythematous maculopapular rash on back and upper arms, with areas of confluent erythema. (Right) Right tonsillar enlargement with an overlying pustular lesion and yellow-green exudate with slight deviation of the uvula

Abscesses

Two participants had soft tissue abscesses identified on ultrasound examination.

One of these participants, a 45-year-old man with a history of HIV (viral load <200 copies/mL on antiretroviral therapy), presented with a left sided groin abscess 10 days after he had shaved the area. The patient attended the emergency department for a left inguinal swelling, which had enlarged over three days, and the patient had associated fever and headache. The swelling had an overlying pustule, which the patient had described as an ingrown hair follicle.

On examination, the swelling, measuring 6×8 cm, was incised and drained by the surgical team. The next evening the patient developed papules and pustules over the mons pubis and face, followed by his neck, wrists, and back (eight lesions in total). Test results for N gonorrhoeae and C trachomatis (triple site (throat, rectal, and urethral) sampling) were negative. About five days later all the lesions had crusted over.

Confluent lesions

One participant, a 40-year-old man with a history of HIV (viral load <200 copies/mL on antiretroviral therapy, CD4 count >500 cells/μL), first presented with vesicular lesions at the base of his penis that he had attributed to shaving. He then developed a fever, cervical lymphadenopathy, headache, fatigue, and loss of appetite. He subsequently developed lesions on his face, hands, torso, thighs, and penile shaft (fig 8). Oral flucloxacillin was started because of the erythema around the lesions. The genital lesions progressed from vesicles to pustules, which in the next five days scabbed over. The scabbed lesions then coalesced and ulcerated, with substantial yellow purulent exudate. On day 8 of symptom onset the patient presented to the emergency department and was discharged owing to no clinical concern. He was admitted to hospital three days later for pain management, wound care, and treatment of presumed secondary bacterial infection. He received intravenous co-amoxiclav, octenisan wash, and fucidin cream, and the appearance of the lesions improved. A wound swab showed heavy mixed growth, including coliforms. Test results for N gonorrhoea and C trachomatis (triple site (throat, rectal, and urethral) testing), herpes simplex virus, and T pallidum were all negative. The patient was discharged after five days with prescribed oral co-amoxiclav.

">Fig 8
Fig 8

Progression of penile lesions. Multiple lesions progressed to become confluent, subsequently forming a large ulcer